Package: blueprintr (via r-universe)

October 13, 2024
Title Automagically Document and Test Datasets Using Targets Or Drake
Version 0.2.7

Description Documents and tests datasets in a reproducible manner so
that data lineage is easier to comprehend for small to medium
tabular data. Originally designed to aid data cleaning tasks
for humanitarian research groups, specifically large-scale
longitudinal studies.

License MIT + file LICENSE

Suggests testthat (>= 2.1.0), covr, codetools, knitr, rmarkdown,
kableExtra, rcoder, labelled, drake (>= 7.11.0), panelcleaner,
kfa, callr, igraph, uuid, visNetwork

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

URL https://github.com/nyuglobalties/blueprintr

BugReports https://github.com/nyuglobalties/blueprintr/issues
Depends R (>=3.5.0)

Imports targets, rlang, here, glue, magrittr, readr, lifecycle,
tidytable, tidyselect (>= 1.2.0), snakecase, digest, data.table

VignetteBuilder knitr

Remotes nyuglobalties/panelcleaner

Repository https://nyuglobalties.r-universe.dev
RemoteUrl https://github.com/nyuglobalties/blueprintr
RemoteRef HEAD

RemoteSha fc12a4572f995e878d5e974cb244{6eb662c8e94

https://github.com/nyuglobalties/blueprintr
https://github.com/nyuglobalties/blueprintr/issues

2 annotations
Contents
annotationsS e e e e e e e e e e e e e 2
attach_blueprints L. 4
blueprint 4
blueprint_macros e e e e e e e e 6
DPSIED e e e e e e 7
bpstep_payload e e e e 8
bp_add_bpstep e e e 8
bp_export_codebook 9
bp_export_kfa_report e e 10
bp_extend e e e e e e 11
bp_include_panelcleaner_meta 12
bp_label_variables 12
checks L e e e e e 13
check list e 13
cleanup L e 14
create_metadata_file 14
eval_checks e 15
IN_SEE . . e e e e e 15
load_blueprint e e e 16
load_table_lineage e 16
metadata L L e e e e e e e e e e e e 17
mutate_annotation e e e e e e e e e e e e e e 17
plan_from_blueprint 18
render_codebook e 19
render_kfa_report L. e e e 20
SUPET_annotationsS v v v v vt e e e e e e e e e e e e e e e e e e e 21
tar_blueprint e e e e e 21
variable_lineage e e 22
vis_table_lineage e e 23
Index 25
annotations Access the blueprintr metadata at runtime
Description
Access the blueprintr metadata at runtime
Usage
annotations(x)
annotation_names(x)

annotation(x, field)

annotations 3

super_annotation(x, field)

has_annotation(x, field)

has_super_annotation(x, field)

add_annotation(x, field, value, overwrite = FALSE)

set_annotation(x, field, value)

add_super_annotation(x, field, value)

remove_super_annotation(x, field)

Arguments
X An object, most likely a variable in a data. frame
field The name of a metadata field
value A value to assign to an annotation field
overwrite If TRUE, allows overwriting of existing annotation values
Functions

annotations(): Gets a list of all annotations assigned to an object
annotation_names(): Get the names of all of the annotations assigned to an object
annotation(): Gets an annotation for an object

super_annotation(): Gets an annotation that overrides existing annotations
has_annotation(): Checks to see if an annotation exists for an object
has_super_annotation(): Checks to see if an overriding annotation exists for an object

add_annotation(): Adds an annotation to an object, with the option of overwriting an exist-
ing value

set_annotation(): Alias to add_annotation(overwrite = TRUE)

add_super_annotation(): Adds an overriding annotation to an object. Note that overriding
annotations will overwrite previous assignments!

remove_super_annotation(): Removes overriding annotation

blueprint

attach_blueprints

Attach blueprints to a drake plan

Description

Blueprints outline a sequence of checks and cleanup steps that come after a dataset is created. In
order for these steps to be executed, the blueprint must be attached to a drake plan so that drake can

run these steps properly.

Usage

attach_blueprints(plan,

attach_blueprint(plan, blueprint)

L)

Arguments
plan A drake plan
Multiple blueprints
blueprint A blueprint object
blueprint Create a blueprint
Description

Create a blueprint

Usage

blueprint(
name,
command,
description = NULL,
metadata = NULL,
annotate = FALSE,
metadata_file_type
metadata_file_name
metadata_directory
metadata_file_path
extra_steps = NULL,

D

class = character()

c("csv"),
NULL,
NULL,
NULL,

blueprint 5

Arguments
name The name of the blueprint
command The code to build the target dataset
description An optional description of the dataset to be used for codebook generation
metadata The associated variable metadata for this dataset
annotate If TRUE, during cleanup the metadata will "annotate" the dataset by adding vari-

able attributes for each metadata field to make metadata provenance easier and
responsive to code changes.
metadata_file_type
The kind of metadata file. Currently only CSV.
metadata_file_name
The file name for the metadata file. If the option blueprintr.use_local_metadata_path
is set to TRUE, then the default file name will be the name of the blueprint script,
minus the .R extension. Otherwise, this will default to the name of the blueprint.
metadata_directory
Where the metadata file will be stored. If the option blueprintr.use_local_metadata_path
is set to TRUE, then the default location will be the folder where the blueprint
script is located. Otherwise, this will default to here: :here("blueprints”)
metadata_file_path
Overrides the metadata file path generated by metadata_directory, name, and
metadata_file_type if not NULL.
extra_steps A list() of extra ’bpstep’ objects, which add extra targets to the workflow
after the desired dataset has completed its cleanup phase. Uses of this could
include generating codebooks or other reports based on the built data. See
bp_add_bpstep() for more details.
Any other parameters and settings for the blueprint

class A subclass of blueprint capability, for future work

Value

A blueprint object

Cleanup Tasks

blueprintr offers some post-check tasks that attempt to match datasets to the metadata as much as
possible. There are two default tasks that run:

1. Reorders variables to match metadata order.
2. Drops variables marked with dropped == TRUE if the dropped variable exists in the metadata.

The remaining tasks have to be enabled by the user:

e If 1abelled = TRUE in the blueprint () command, all columns will be converted to labelled()
columns, provided that at least the description field is filled in. If the coding column is
present in the metadata, then categorical levels as specified by a coding() will be added to the
column as well. In case the description field is used for detailed column descriptions, the
title field can be added to the metadata to act as short titles for the columns.

6 blueprint_macros

blueprint_macros Macros for blueprint authoring

Description

blueprintr uses code inspection to identify and trace dataset dependencies. These macro functions
signal a dependency to blueprintr and evaluate to symbols to be analyzed in the drake plan.

Usage
.TARGET (bp_name, .env = parent.frame())
.BLUEPRINT (bp_name, .env = parent.frame())
.META(bp_name, .env = parent.frame())
.SOURCE (dat_name)

mark_source(dat)

Arguments
bp_name Character string of blueprint’s name
.env The environment in which to evaluate the macro. For internal use only!
dat_name Character string of an object’s name, used exclusively for marking "sources"
dat A data.frame-like object

Functions

* .TARGET(): Gets symbol of built and checked data

.BLUEPRINT(): Gets symbol of blueprint reference in plan

.META(): Gets symbol of metadata reference in plan

.SOURCE (): Gets a symbol for an object intended to be a "data source"

» mark_source(): Mark an data.frame-like object as a source table

When to use

Generally speaking, the .BLUEPRINT and .META macros should be used for check functions, which
frequently require context, e.g. in the form of configuration from the blueprint or coding expec-
tations from the metadata. . TARGET is primarily used in blueprint commands, but there could be
situations where a check depends on the content of another dataset.

It is important to note that the symbols generated by these macros are only understood in the context
of a drake plan. The targets associated with the symbols are generated when blueprints are attached
to a plan.

bpstep 7

Sources

Sources are an ability to add variable UUIDs to objects that are not constructed using blueprints.
This is often the case if the sourced table derives from some intermittent HTTP query or a file
from disk. Blueprints have limited capability of configuring the underlying target behavior during
the _initial phase, so often it is easier to do that sort of fetching and pre-processing before us-
ing blueprints. However, you lose the benefit of variable lineage when you don’t use blueprints.
"Sources" are simply data.frame-like objects that have the ".uuid" attribute for each variable so that
variable lineage can cover the full data lifetime. Use blueprintr::mark_source() to add the
UUID attributes, and then use . SOURCE () in the blueprints so lineage can be captured

Examples

.TARGET ("example_dataset"”)
.BLUEPRINT ("example_dataset”)
.META("example_dataset")

blueprint(
"test_bp",
description = "Blueprint with dependencies”,
command =
.TARGET ("parent1") %>%
left_join(.TARGET("parent2"), by = "id") %>%
filter(!is.na(id))

bpstep Define a step of blueprint assembly

Description

Each step in the blueprint assembly process is contained in a wrapper "bpstep’ object.

Usage
bpstep(step, bp, payload, ...)
Arguments
step The name of the step
bp A ’blueprint’ object to create the assembled step
payload A ’bpstep_payload’ object that outlines the code to be assembled depending on
the workflow executor
Extensions to the bpstep, like "allow_duplicates"
Value

A ’bpstep’ object

8 bp_add_bpstep

bpstep_payload Create a step payload

Description

The bpstep payload is the object that contains the target name and command, along with any other
metadata to be passed to the execution engine.

Usage

bpstep_payload(target_name, target_command, ...)
Arguments

target_name The target’s name

target_command The target’s command

Arguments to be passed to the executing engine (e.g. arguments sent to tar-
gets::tar_target())

Value

A bpstep payload object

Examples

if (FALSE) {
bpstep(
step = "some_step”,
bp = some_bp_object,
payload = bpstep_payload(
"payload_name”,
payload_command ()
)
)
}

bp_add_bpstep Add custom bpstep to blueprint schema

Description
blueprint() objects store custom bpstep objects in the "extra_steps" element. This function adds
a new step to that element.

Usage
bp_add_bpstep(bp, step)

bp_export_codebook

Arguments
bp A blueprint
step A bpstep object
Examples

if (FALSE) {
Based on the codebook export step
step <- bpstep(
step = "export_codebook”,
bp = bp,
payload = bpstep_payload(
target_name = blueprint_codebook_name(bp),
target_command = codebook_export_call(bp),
format = "file"”,

)
)

bp_add_bpstep(
bp,
step
)
3

bp_export_codebook Instruct blueprint to export codebooks

Description

Instruct blueprint to export codebooks

Usage
bp_export_codebook (
blueprint,
summaries = FALSE,
file = NULL,
template = NULL,
title = NULL
)
Arguments
blueprint A blueprint
summaries Whether or not variable summaries should be included in codebook
file Path to where the codebook should be saved
template A path to an RMarkdown template

title Optional title of codebook

10

Value

An amended blueprint with the codebook export instructions

Examples
Not run:
test_bp <- blueprint(
"mtcars_dat",
description = "The mtcars dataset”,
command = mtcars
)

new_bp <- test_bp %>% bp_export_codebook()

End(Not run)

bp_export_kfa_report

bp_export_kfa_report Instruct blueprint to generate kfa report

Description

Instruct blueprint to generate kfa report

Usage
bp_export_kfa_report(
bp,
scale,
path = NULL,

path_pattern = NULL,
format = NULL,

title = NULL,
kfa_args = list(),

)
Arguments
bp A blueprint
scale Which scale(s) to analyze
path Path(s) to where the report(s) should be saved

path_pattern Override the default location to save files (always rooted to the project root with

here::here())

format The output format of the report(s)
title Optional title of report
kfa_args Arguments forwarded to kfa: :kfa() for this batch of scales

Arguments forwarded to the executing engine e.g. targets::tar_target_raw() or

drake::target()

bp_extend 11

Value

An amended blueprint with the kfa report export instructions

Examples

Not run:

test_bp <- blueprint(
"mtcars_dat”,
description = "The mtcars dataset”,
command = mtcars

)
new_bp <- test_bp %>% bp_export_codebook()

End(Not run)

bp_extend Add custom elements to a blueprint

Description

blueprint() objects are essentially just 1ist() objects that contain a bunch of metadata on the
data asset construction. Use bp_extend() to set or add new elements.

Usage

bp_extend(bp, ...)

Arguments
bp A blueprint
Keyword arguments forwarded to blueprint()
Examples

if (FALSE) {
bp <- blueprint(”some_blueprint”, ...)
adjusted_bp <- bp_extend(bp, new_option = TRUE)
bp_with_annotation_set <- bp_extend(bp, annotate = TRUE)
}

12 bp_label_variables

bp_include_panelcleaner_meta
Include panelcleaner mapping on metadata creation

Description

panelcleaner defines a mapping structure used for data import of panel, or more generally longi-
tudinal, surveys / data which can be used as a source for some kinds of metadata (currently, only
categorical coding information). If the blueprint constructs a mapped_df object, then this extension
will signal to blueprintr to extract the mapping information and include it.

Usage

bp_include_panelcleaner_meta(blueprint)

Arguments

blueprint A blueprint that may create a mapped_df data.frame

Value

An amended blueprint with mapped_df metadata extraction set for metadata creation

bp_label_variables Convert variables to labelled variables in cleanup stage

Description

The haven package has a handy tool called "labeled vectors", which are like factors that can be
interpreted in other statistical software like STATA and SPSS. See haven::labelled() for more infor-
mation on the type. Running this on a blueprint will instruct the blueprint to convert all variables
with non-NA title, description, or coding fields to labeled vectors.

Usage

bp_label_variables(blueprint)

Arguments

blueprint A blueprint

Value

An amended blueprint with variable labelling in the cleanup phase set

https://nyuglobalties.github.io/panelcleaner/]
https://haven.tidyverse.org/

checks 13

checks Evaluate checks on the blueprint build output

Description

After building a dataset, it’s beneficial (if not a requirement) to run tests on that dataset to ensure
that it behaves as expected. blueprintr gives authors a framework to run these tests automatically,
both for individual variables and general dataset checks. blueprintr provides three functions as
models for developing these kinds of functions: one to check that all expected variables are present,
one to check the variable types, and a generic function that checks if variable values are contained
within a known set.

Usage

all_variables_present(df, meta, blueprint)

all_types_match(df, meta)

Arguments
df The built dataset
meta The dataset’s metadata
blueprint The dataset’s blueprint
check_list Create a quoted list of check calls
Description

Create a quoted list of check calls

Usage

check_list(...)

Arguments

A collection of calls to be used for checks

14 create_metadata_file

cleanup Run clean-up tasks and return built dataset

Description

After checks pass, this step runs in the blueprint sequence. If any cleanup features are enabled, they
will run on the dataset prior to setting the final blueprint target.

Usage

cleanup(results, df, blueprint, meta)

Arguments
results A reference to the checks results. Currently used to ensure that this step runs
after the checks step.
df The built dataset
blueprint The blueprint associated with the built dataset
meta The metadata associated with the built dataset

create_metadata_file Create a metadata file from a dataset

Description

One of the targets in the blueprint workflow target chain. If a metadata file does not exist, then this
function will be added to the workflow.

Usage
create_metadata_file(df, blueprint, ...)

Arguments
df A dataframe that the metadata table describes
blueprint The original blueprint for the dataframe

A variable list of metadata tables on which this metadata table depends

eval checks 15

eval_checks Evaluate all checks on a blueprint

Description

Runs all checks — dataset and variable — on a blueprint to determine if a built dataset passes all

restrictions.
Usage
eval_checks(..., .env = parent.frame())
Arguments
All quoted check calls
.env The environment in which the calls are evaluated

Check functions

Check functions are simple functions that take in either a data.frame or variable at the minimum,
plus some extra arguments if need, and returns a logical value: TRUE or FALSE. In blueprintr, the
entire check passes or fails unlike other testing frameworks like pointblank. If you’d like to embed
extra context for your test result, modify the "check.errors" attribute of the returned logical value
with a character vector which will be rendered into a bulleted list. Note: if you embed reasons for
a TRUE, the check will produce a warning in the targets or drake pipeline.

in_set Test if x is a subset of y

Description

Test if x is a subset of y

Usage

in_set(x, y)

Arguments

X A vector

y A vector representing an entire set

16 load_table_lineage

load_blueprint Load a blueprint from a script file

Description

Load a blueprint from a script file

Usage
load_blueprint(plan, file)

load_blueprints(plan, directory = here::here("blueprints”), recurse = FALSE)

Arguments
plan A drake plan
file A path to a script file
directory A path to a directory with script files that are blueprints. Defaults to the "blueprints"
directory at the root of the current R project.
recurse Recursively loads blueprints from a directory if TRUE
Value

A drake_plan with attached blueprints

Empty blueprint folder

By default, blueprintr ignore empty blueprint folders. However, it may be beneficial to warn users if

folder is empty, particularly during project setup. This helps identify any potential misconfiguration

of drake plan attachment. To enable these warnings, set option(blueprintr.warn_empty_blueprints_dirs
= TRUE).

load_table_lineage Read blueprints from folder and get lineage

Description

Read blueprints from folder and get lineage

Usage

load_table_lineage(
directory = here::here("blueprints”),
recurse = FALSE,
script = here::here("_targets.R")

)

metadata 17

Arguments

directory A folder containing blueprint scripts

recurse Should this function recursively load blueprints?

script Where the targets/drake project script file is located. Defaults to using targets.
Value

An igraph of the table lineage for the desired blueprints

metadata Convert an input dataframe into a metadata object

Description

Convert an input dataframe into a metadata object

Usage
metadata(df)

Arguments

df A dataframe that will be converted into a metadata object, once content checks
pass.

mutate_annotation Modify dataset variable annotations

Description

Usually, metadata should be a reflection of what the data should represent and act as a check on the
generation code. However, in the course of data aggregation, it can be common to perform mas-
sive transformations that would be cumbersome to document manually. This exposes a metadata-
manipulation framework prior to metadata file creation, in the style of tidytable: :mutate.

Usage

mutate_annotation(.data, .field, ..., .overwrite = TRUE)

mutate_annotation_across(
.data,
.field,
.fn,
.cols = tidyselect::everything(),
.with_names = FALSE,

D

.overwrite = TRUE

18 plan_from_blueprint

Arguments

.data A data.frame

.field The name of the annotation field that you wish to modify
For mutate_annotation, named parameters that contain the annotation values.
Like tidytable: :mutate, each parameter name is a variable (that must already
exist!), and each parameter value is an R expression, evaluated with .data as a
data mask.

For mutate_annotation_across, extra arguments passed to . fn

.overwrite If TRUE, overwrites existing annotation values. Annotations have an overwrit-
ing guard by default, but since these functions are intentionally modifying the
annotations, this parameter defaults to TRUE.

.fn A function that takes in a vector and arbitrary arguments . . . If .with_names is
TRUE, then . fn will be passed the vector and the name of the vector, since it’s
often useful to compute on the metadata.

.cols A tidyselect-compatible selection of variables to be edited

.with_names If TRUE, passes a column and its name as arguments to . fn

Value

A data. frame with annotated columns

Examples

Adds a "mean” annotation to 'mpg'’
mutate_annotation(mtcars, "mean"”, mpg = mean(mpg))

Adds a "mean” annotation to all variables in “mtcars”
mutate_annotation_across(mtcars, "mean”, .fn = mean)

Adds a "title"” annotation that copies the column name
mutate_annotation_across(

mtcars,

"title”,

.fn = function(x, nx) nx,

.with_names = TRUE

plan_from_blueprint Create a drake plan from a blueprint

Description

Creates a new drake plan from a blueprint

Usage

plan_from_blueprint(blueprint)

render_codebook

Arguments

blueprint

Value

A blueprint

A drake plan with all of the necessary blueprint steps

19

render_codebook

Render codebooks for datasets

Description

Render codebooks for datasets

Usage

render_codebook (

blueprint,

meta,
file,
title =

glue::glue("{ui_value(blueprint$name)} Codebook"),

dataset = NULL,

template

Arguments

blueprint
meta

file
title
dataset

template

bp_path("”codebook_templates/default_codebook.Rmd"),

A dataset blueprint

A blueprint_metadata object related to the blueprint

Path to where the codebook should be saved

Title of the codebook

If included, a data. frame to be used as a source for summaries
Path to the knitr template

Extra parameters passed to rmarkdown: : render ()

20 render_kta_report

render_kfa_report Render k-fold factor analysis on scale using kfa

Description

Generates a k-fold factor analysis report using the ’scale’ field in the blueprintr data dictionaries.
While not recommended, this function does allow for multiple loaded variables, delimited by com-
mas. For example, varl’ could have ’scale’ be "SCALE1,SCALE2".

Usage

render_kfa_report(
dat,
bp,
meta,
scale,
path = NULL,
path_pattern = "reports/kfa-{snakecase_scale}-{dat_name}.html"”,
format = NULL,

title = NULL,
)
Arguments
dat Source data
bp The dataset’s blueprint
meta blueprintr data dictionary
scale Scale identifier to be located in the ’scale’ field
path Where to output the report; defaults to the "reports" subfolder of the current

working project folder.

path_pattern If path is NULL, this is where the report will be saved. Variables available for use
are:

¢ scale: The scale name defined in the metadata
* snakecase_scale: scale but in snake_case
* dat_name: Name of the dataset (equivalent to the blueprint name)

format The output format; defaults to "html_document’
title Optional title of the report
Arugments forwarded kfa::kfa()

Value

Path to where the generated report is saved

super_annotations 21

super_annotations "Super Annotations"”

Description

As of blueprintr 0.2.1, there is now the option for metadata files to always overwrite annotations at
runtime. Previously, this would be a conflict with mutate_annotation and mutate_annotation_across
since the annotation phase happens during the blueprint cleanup phase, whereas these annotation
manipulation tools occur at the blueprint initial phase. To resolve this, 0.2.1 introduces "super
annotations", which are just annotations prefixed with "super.”". However, the super annotations
will overwrite the normal annotations during cleanup. This gives the annotation manipulation tools
a means of not losing their work if annotate_overwrite is effectively enabled. To enable this
functionality, set options(blueprintr.use_improved_annotations = TRUE). This also has the
side effect of always treating annotate = TRUE and annotate_overwrite = TRUE.

Usage
improved_annotation_option()
using_improved_annotations()

Functions

* improved_annotation_option(): Returns the option string for improved annotations

e using_improved_annotations(): Checks if improved annotations are enabled

tar_blueprint Add a blueprint to a "targets" pipeline

Description

Unlike drake, which requires some extra metaprogramming to "attach" blueprint steps to a plan,
targets pipelines allow for direct target construction. Blueprints can thus be added directly into a
tar_pipeline() object using this function. The arguments for tar_blueprint() are exactly the
same as blueprint(). tar_blueprints() behaves like load_blueprints() but is called, like
tar_blueprint(), directly in a tar_pipeline() object.

Usage

tar_blueprint(...)
tar_blueprints(directory = here::here(”"blueprints”), recurse = FALSE)

tar_blueprint_raw(bp)

22 variable_lineage

Arguments
Arguments passed to blueprint()
directory A folder containing R scripts that evaluate to blueprint() objects
recurse Recursively loads blueprints from a directory if TRUE
bp A blueprint object
Value

A list() of tar_target objects

Empty blueprint folder

By default, blueprintr ignore empty blueprint folders. However, it may be beneficial to warn users if
folder is empty, particularly during project setup. This helps identify any potential misconfiguration

of targets generation. To enable these warnings, set option(blueprintr.warn_empty_blueprints_dirs
= TRUE).

variable_lineage Variable lineage

Description

This is an experimental feature that traces variable lineage through an injection of a ".uuid" attribute
for each variable. Previous attempts at variable lineage were conducted using variable names and
heuristics of known functions. This approach yields a more consistent lineage.

Usage

load_variable_lineage(
directory = here::here("blueprints”),
recurse = FALSE,
script = here::here("_targets.R")

)

filter_variable_lineage(
g,
variables = NULL,
tables = NULL,
mode = "all”,
cutoff = -1

)

vis_variable_lineage(..., g = NULL, cluster_by_dataset = TRUE)

vis_table_lineage

Arguments

directory
recurse
script

g

variables

tables

mode
cutoff
cluster_by_data

Details

23

A folder containing blueprint scripts
Should this function recursively load blueprints?
Where the targets/drake project script file is located. Defaults to using targets.

An igraph object. This defaults to a graph loaded with load_variable_lineage.
However, use this if you want to inspect subgraphs of the variable lineage.

Character vector of patterns for variable names to match. Note that each pattern
is assumed to be disjoint (e.g. "if variable pattern A or variable pattern B"), but
if tables is not NULL, the search will be joint (e.g. "if (variable pattern A or
variable pattern B) and (table pattern A or table pattern B)").

Character vector of patterns for table names to match. Note that each pattern
is assumed to be disjoint (e.g. "if table pattern A or table pattern B"), but if
variables is not NULL, the search will be joint (e.g. "if (table pattern A or table
pattern B) and (variable pattern A or variable pattern B)").

Which sort of relationships to include. Defaults to "all" (includes both relations
to the target node in the graph and from the target node in the graph). See
igraph::all_simple_paths() for more details.

The number of node steps to consider in the graph traversal for filtering. Defaults
to -1 (no limit on steps). See igraph::all_simple_paths() for more details.

Arguments passed to load_variable_lineage

set

If TRUE, variable nodes will be clustered into their respective dataset

To enable the variable feature, set options(blueprintr.use_variable_uuids = TRUE).

Functions

* load_variable_lineage(): Reads blueprintrs from folder to get variable lineage. Returns
an igraph of the variable lineage.

» filter_variable_lineage(): Filter for specific variables to include in the lineage graph

e vis_variable_lineage(): Visualizes variable lineage with visNetwork. Returns an interac-

tive graph.

vis_table_lineage

Visualize table lineage with visNetwork

Description

Visualize table lineage with visNetwork

24 vis_table_lineage

Usage
vis_table_lineage(..., g = NULL)
Arguments
Arguments passed to load_table_lineage
g An igraph object, defaulting to the one created with load_table_lineage
Value

Interactive graph run by visNetwork

Index

.BLUEPRINT (blueprint_macros), 6
.META (blueprint_macros), 6
.SOURCE (blueprint_macros), 6
.TARGET (blueprint_macros), 6

add_annotation (annotations), 2
add_super_annotation (annotations), 2
all_types_match (checks), 13
all_variables_present (checks), 13
annotation (annotations), 2
annotation_names (annotations), 2
annotations, 2

attach_blueprint (attach_blueprints), 4

attach_blueprints, 4

blueprint, 4
blueprint_macros, 6
bp_add_bpstep, 8
bp_add_bpstep(), 5
bp_export_codebook, 9
bp_export_kfa_report, 10
bp_extend, 11
bp_include_panelcleaner_meta, 12
bp_label_variables, 12
bpstep, 7, 8
bpstep_payload, 8

check_list, 13

checks, 13

cleanup, 14

coding(), 5
create_metadata_file, 14

eval_checks, 15

filter_variable_lineage
(variable_lineage), 22

has_annotation (annotations), 2
has_super_annotation (annotations), 2
haven: :1labelled(), 12

igraph::all_simple_paths(), 23
improved_annotation_option

(super_annotations), 21
in_set, 15

labelled(), 5

load_blueprint, 16

load_blueprints (load_blueprint), 16

load_table_lineage, 16, 24

load_variable_lineage, 23

load_variable_lineage
(variable_lineage), 22

mark_source (blueprint_macros), 6
metadata, 17
mutate_annotation, 17, 21
mutate_annotation_across, 2/
mutate_annotation_across
(mutate_annotation), 17

plan_from_blueprint, 18

remove_super_annotation (annotations), 2

render_codebook, 19
render_kfa_report, 20
rmarkdown: :render (), 19

set_annotation (annotations), 2
super_annotation (annotations), 2
super_annotations, 21

tar_blueprint, 21
tar_blueprint_raw (tar_blueprint), 21
tar_blueprints (tar_blueprint), 21

using_improved_annotations
(super_annotations), 21

variable_lineage, 22

vis_table_lineage, 23

vis_variable_lineage
(variable_lineage), 22

	annotations
	attach_blueprints
	blueprint
	blueprint_macros
	bpstep
	bpstep_payload
	bp_add_bpstep
	bp_export_codebook
	bp_export_kfa_report
	bp_extend
	bp_include_panelcleaner_meta
	bp_label_variables
	checks
	check_list
	cleanup
	create_metadata_file
	eval_checks
	in_set
	load_blueprint
	load_table_lineage
	metadata
	mutate_annotation
	plan_from_blueprint
	render_codebook
	render_kfa_report
	super_annotations
	tar_blueprint
	variable_lineage
	vis_table_lineage
	Index

